Breadcrumb
Optimized Preliminary Design of a Multistage Low-Speed Axial FLow Compressor
This paper proposes a technique based on a MAT-LAB code capable of getting an optimized preliminary design of an efficient low-speed compressor qualified for laboratory experiments with relatively low cost. The code was made to design five repeated compressor stages on two steps conducted iteratively, namely 'mean line and radial design' to determine the optimum compressor geometry and then the 'off-design' to test the stability of the design in other working conditions. The optimization tool minimizes a flexible cost function which can be changed if needed to get different designs. A certain
Modelling Three Dimensional Unsteady Turbulent HVAC Induced Flow
The number of words should not exceed 350. A three-dimensional numerical model for HVAC induced flow is presented. The nonlinear set of buoyancy driven incompressible flow equations, augmented with those of energy and k-ϵ turbulence model is solved. Various relevant are discussed. These challenges include avoiding expensive commercial packages, modelling complex boundaries, and capturing near wall gradients. Adaptive time stepping is employed to optimize computational effort. Threedimensional simulation requirements are addressed using parallel computations. Twodimensional and three
A Heterogeneous Vehicle Routing Problem with Soft Time Windows for 3PL Company's Deliveries: A Case Study
Route optimization is tactically important for companies that must fulfill the demands of different customers with fleet of vehicles, considering multiple factors like: The cost of the resources (vehicles) involved and the operating costs of the entire process. As a case study, a third-party logistics service provider, ABC Company, is introduced to implement optimization on. Furthermore, ABC Company's problem is defined as route optimization and load consolidation problems that will be solved as heterogeneous vehicle routing problem with soft time windows (HVRPSTW). In this paper's case
Turbulent Axisymmetric Non-Isothermal Flow of the Hitec Molten Salt with Temperature Dependent Properties: A Numerical Investigation
An analytical model for the effective filtration efficiency of single and multiple face masks considering leakage
Air change rate effects on the airborne diseases spreading in Underground Metro wagons
Design of a Schlieren System for Visualization of Heat and Mass Transfer
In this contribution, a simple yet effective design for Schlieren photography system is described and implemented. The proposed system is used in the visualization of both heat and mass transfer phenomena. Refractive index gradient is created by a lighter to study mass transfer, then the lighter is ignited to create temperature gradient. Results show the ability of the proposed system in capturing the gradients in both mass and temperature gradients. © 2020 IEEE.
Simulation of Water Wave Interaction with Large Submerged Square Obstacles
Modified P3HT:PCBM Active Material with LiF Vertical Cylinders for Organic Solar Cells
In this paper, we introduce active material for an organic solar cell with a modified composition. A combination of P3HT: PCBM with parallel vertical LiF cylinders formulate the active material structure. The collection efficiency in the active material reaches 92.2%. The operating wavelength where the maximum collection efficiency occurs is adjusted and matched with the wavelength where the maximum irradiance of the solar spectrum occurs. The absorption per unit volume of the new structure is 80.4 μm-3 while the blank structure is 75.07 μm-3. The net absorption magnitude for the required
Analytic and numeric analysis for deformation of non-prismatic beams resting on elastic foundations
Background: The buckling load as well as the natural frequency under axial load for non-prismatic beam is a changeling problem. Determination of buckling load, natural frequency, and elastic deflection is very important in civil applications. The current paper used both perturbation method (PM), analytic method, and differential quadrature method (DQM), numerical method, to find buckling load and natural frequency with different end supports. The deflection of the beam resting on an elastic foundation under transverse distributed and axial loads is also obtained. Both PM and DQM are used for
Pagination
- Previous page ‹‹
- Page 4
- Next page ››