bbabanner.jpg

Filter by

Underwater Soft Robotics: A Review of Bioinspiration in Design, Actuation, Modeling, and Control

Nature and biological creatures are some of the main sources of inspiration for humans. Engineers have aspired to emulate these natural systems. As rigid systems become increasingly limited in their capabilities to perform complex tasks and adapt to their environment like living creatures, the need for soft systems has become more prominent due to the similar complex, compliant, and flexible

Mechanical Design

Optimization of lactic acid production from agro-industrial wastes produced by Kosakonia cowanii

Lactic acid is used for the preparation of poly-lactic acid. The objective of this research was to produce lactic acid from agro-industrial wastes as cheap, renewable substrates, and also reduce the pollution burden on the environment. Sixteen bacterial isolates were isolated from agro-industrial wastes. The chemical hydrolysis of agro-industrial wastes was achieved with hydrochloric acid

Healthcare
Innovation, Entrepreneurship and Competitiveness

Design, simulation, and kinematics of 9-DOF Serial-Parallel Hybrid Manipulator Robot

Serial manipulator robot is one of the most advanced robots in the last decade. The demand for this type of robot leads the researchers to develop and improve the robot to increase its workspace, speed and to minimize the control complexity. This paper presents a novel robot configuration that combines a 6 DOF serial manipulator with a 3 DOF spherical parallel wrist. The serial manipulator is KUKA

Software and Communications
Mechanical Design

A 3D-convolutional neural network framework with ensemble learning techniques for multi-modal emotion recognition

Nowadays, human emotion recognition is a mandatory task for many human machine interaction fields. This paper proposes a novel multi-modal human emotion recognition framework. The proposed scheme utilizes first the 3D-Convolutional Neural Network (3D-CNN) deep learning architecture for extracting the spatio-temporal features from the electroencephalogram (EEG) signals, and the video data of human

Mechanical Design

Stabilized variational formulation of an oldroyd-B fluid flow equations on a Graphic Processing Unit (GPU) architecture

The governing equations of the flow of an oldroyd-B fluid are discretized using the finite element method. To overcome the convective nature of the momentum equation, the Galerkin/Least-Squares Finite Element Method (GLS/FEM) is used while the Discrete Elastic–Viscous Stress-Splitting (DEVSS) method is used to overcome the instability due to the absence of diffusion in the constitutive equations

Mechanical Design

Enhancing barrier properties of chitosan extracted from shrimp shells as a sustainable material for active packaging using natural wastes

Due to the environmental concerns, much responsiveness has been paid to natural polymers and recycle wastes. Disposal of wastes like marine wastes and domestic wastes end up in landfills and open areas which cause environmental crisis. The development of biodegradable active packaging materials is one of the alternatives to reduce the using of synthetic petroleum-based plastics. Biodegradable

Mechanical Design

Effect of thickness and temperature on flexible organic P3HT:PCBM solar cell performance

A blend of poly 3-hexylthiophene (P3HT) and [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM) is used as a photoactive layer for simulating a bulk heterojunction organic solar using general-purpose photovoltaic device model (GPVDM) software. The optical and electrical performance of the cell had been analyzed by changing the thickness of each layer and substrate material over a range of operating

Software and Communications
Mechanical Design

An improved generic Johnson-Cook model for the flow prediction of different categories of alloys at elevated temperatures and dynamic loading conditions

This paper presents a generic model for material flow prediction based on the well-known Johnson-Cook model. The model is developed to precisely predict the flow behavior of various categories of alloys. The coupled effects between strain, strain rate, and temperature were taken into consideration. The proposed model is developed and assessed using the hot deformation data of four different

Mechanical Design

A logarithmic formulation for anisotropic behavior characterization of bovine cortical bone tissue in long bones undergoing uniaxial compression at different speeds

The mechanical properties of bone tissues change significantly within the bone body, since it is considered as a heterogeneous material. The characterization of bone mechanical properties is necessary for many studies, such as in prosthesis design. An experimental uniaxial compression study is carried out in this work on bovine cortical bone tissue in long bones (femur and tibia) at several speeds

Mechanical Design

Lid-Driven Cavity Flow with Elliptic Obstacle at Different Orientations

The aim of the present work is to predict the flow field around an elliptic obstacle at different orientations inside a square Lid-Driven Cavity (LDC). The Lattice Boltzmann Method (LBM) is used to simulate the flow at a Reynolds number, Re, of 100, using the two-dimensional nine-velocity, (D2Q9) lattice configuration and the BGK collision operator. The in-house code is validated using data from

Mechanical Design