bbabanner.jpg

Prediction of Internal Flow's Characteristics around Two Cylinders in Tandem using optimal T-S fuzzy

Laminar unsteady incompressible flow past two-cylinders in tandem is investigated numerically. The vortex shedding over the cylinders' arrangement is studied at various Reynolds numbers and blockage ratios while changing the distance between the two cylinders. The output from the numerical simulations is used to feed different regression methodologies to find the optimal approach for the proposed system modeling and identification. Artificial Neural Network (ANN) using Levenberg-Marquardt Algorithm (LM) training algorithm is used, as well as Takagi-Sugeno (T-S) fuzzy model are used and

Mechanical Design

Prediction of the Hitec Molten Salt Convective Heat Transfer Performance Using Artificial Neural Networks

Hitec molten salt is a ternary eutectic mixture salt that is used as an energy storage medium in concentrated solar power plants to improve the system performance and reduce the operational cost. Thus, the heat transfer performance represented in Nusselt number has been investigated numerically under different inlet temperature and velocity conditions with constant uniform side heat flux. Also, friction factor and mass flow rate are studied numerically. CFD input/output data with 40 studied cases are used as a training dataset of a 2-layer Neural Network for thermo-hydro fields’ accelerated

Mechanical Design

E-learning system model for university education using uml

High quality education should be the top priority for any nation seeking prosperity. This paper aims to present a conceptual model for e-learning system for developing countries. This is achieved adopting an object-oriented approach and Unified Modeling Language (UML). The functional and dynamic views of the system are presented and explained within this framework. The functional system includes Use Case diagrams and activity diagrams which are developed based on predefined functional requirements of the system. Furthermore, in the dynamic view of the system, interaction diagrams are developed

Mechanical Design

Effect of thickness and temperature on flexible organic P3HT:PCBM solar cell performance

A blend of poly 3-hexylthiophene (P3HT) and [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM) is used as a photoactive layer for simulating a bulk heterojunction organic solar using general-purpose photovoltaic device model (GPVDM) software. The optical and electrical performance of the cell had been analyzed by changing the thickness of each layer and substrate material over a range of operating temperatures from -10 °C to - 40 °C. The flexible device exhibits higher PCE compared to a rigid device. The performance of the device was studied using transient simulation at different operating

Software and Communications
Mechanical Design

Enhancing barrier properties of chitosan extracted from shrimp shells as a sustainable material for active packaging using natural wastes

Due to the environmental concerns, much responsiveness has been paid to natural polymers and recycle wastes. Disposal of wastes like marine wastes and domestic wastes end up in landfills and open areas which cause environmental crisis. The development of biodegradable active packaging materials is one of the alternatives to reduce the using of synthetic petroleum-based plastics. Biodegradable films are made from biopolymers that were shown to have affinities in improving the shelf life of food product. © 2021 Nova Science Publishers, Inc.

Mechanical Design

Stabilized variational formulation of an oldroyd-B fluid flow equations on a Graphic Processing Unit (GPU) architecture

The governing equations of the flow of an oldroyd-B fluid are discretized using the finite element method. To overcome the convective nature of the momentum equation, the Galerkin/Least-Squares Finite Element Method (GLS/FEM) is used while the Discrete Elastic–Viscous Stress-Splitting (DEVSS) method is used to overcome the instability due to the absence of diffusion in the constitutive equations. The discretized equations are implemented on a hybrid system between the Graphics Processing Unit (GPU) architecture using Compute-Unified-Device-Architecture (CUDA) and a multi-core CPU. The

Mechanical Design