
Research Project
Enrichment of biological activity of zinc doped borate glasses by nano second laser irradiation
Abstract The project explores the use of Nd: YAG laser irradiation to synthesize nano bioactive glass for bone replacement. The technique involves precipitating nanoparticles in a glassy matrix, such as borate glasses, doped with zinc oxide (ZnO) using a melt quenching technique. The effects of different concentrations of ZnO on the glasses' structural and optical properties were studied using

Research Project
Activated Carbon Nanoparticles for Enhanced Wound Healing and Tissue Regeneration
Abstract Activated carbon nanoparticles (ACNPs) are novel antimicrobial materials being explored for wound healing and tissue regeneration. ACNPs can be coated on fabrics to provide antibacterial protection. Porous ACNPs can absorb impurities and toxins from wounds, acting as effective wound dressings. To evaluate their effectiveness and safety, antimicrobial testing and cytotoxicity assays are

Research Project
Activated carbon- from agricultural waste for removal of industrial dyes and heavy metals
Abstract The production of activated carbon from bagasse and coffee waste is a promising approach for sustainable waste management and the production of a valuable material. Bagasse, the fibrous residue from sugarcane processing, and coffee waste, such as coffee grounds or husks, are abundant agricultural by-products with high carbon content. The resulting activated carbon exhibits excellent

Research Project
Sugarcane Bagasse Recycling for Wood-Based Panels
Abstract The project explores the recycling and reuse of organic waste fibers sugarcane bagasse (SCB). The project investigates the chemical, physical, and mechanical properties of SCB, its production percentage in Egypt, and particle board production from SCB. The project investigates the mechanical properties of a composite material made from sugar cane and epoxy. The addition of epoxy resin

Research Project
Developing a Floating Robot for Mechanical Control of Water Hyacinth
Abstract Water hyacinth has become widespread in freshwater bodies in several countries, leading to various issues, particularly its substantial water consumption and the resulting need to control its growth. Among the different methods of controlling water hyacinth, mechanical control stands out as the most effective and environmentally friendly approach. A proposed harvester robot has been

Research Project
Managing and Recycling Water Hyacinth: Challenges, Methods, and Benefits
Abstract Water hyacinth, an invasive aquatic plant, poses significant challenges to water bodies worldwide. Control methods include mechanical removal, biological suppression using naturalenemies, and chemical use of targeted herbicides. Integrated approaches that combine multiple methods have proven successful in managing water hyacinth infestations. Benefits include restoring water flow

Research Project
Observer-Based Adaptive Event-Triggered Fractional-Order Sliding Mode Control Using Online Fractional-Order Learning Approach
Abstract This project introduces an innovative adaptive event-triggered control strategy (ETS) for networked uncertain nonlinear systems with unmeasured states. The proposed method, called ETFFSMC-FAC, combines a fractional-order fuzzy sliding mode controller with a fractional-order actor-critic (FAC) approach. Initially, unmeasured states are estimated using a sigma-point Kalman filter (SKF)

Research Project
Fractional-order Fuzzy Sliding Mode Control of Uncertain Nonlinear MIMO Systems Using Fractional-order Reinforcement Learning
Abstract This project presents a novel approach to enhance the control performance of unknown multiple-input and multiple-output (MIMO) nonlinear systems. The proposed method integrates a fractional-order fuzzy sliding mode controller with online fractional-order reinforcement learning (FOFSMC-FRL). The controller utilizes two Takagi–Sugeno–Kang (TSK) fuzzy neural network actors to approximate the

Research Project
Optimal Fractional-Order PID Controller based on Fractional-Order Actor-Critic Algorithm
Abstract This project proposes an online optimization approach for a fractional-order PID controller using a fractional-order actor-critic algorithm (FOPID-FOAC), aiming to enhance the performance of nonlinear systems. The FOPID-FOAC scheme combines the advantages of fractional-order PID controllers and actor-critic reinforcement learning algorithms. The proposed FOAC algorithm employs fractional

Research Project
Optimization of Solar Tree Performance in Egypt: A Simulation-Based Investigation
Abstract This project explores the optimization of solar tree performance in Egypt through the orientation and positioning of solar panels. Solar energy is a crucial and abundant resource in Egypt, and the paper proposes the use of solar trees as a promising solution to harness this energy efficiently. The design process involves two main aspects: optimizing the orientation of solar panels and
Pagination
- Previous page
- Page 5
- Next page